skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cisneros, G. Andrés"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 28, 2026
  2. QM/MM methods have been used to study electronic structure properties and chemical reactivity in complex molecular systems where direct electronic structure calculations are not feasible. In our previous work, we showed that non-polarizable force fields, by design, describe intermolecular interactions through pairwise interactions, overlooking many-body interactions involving three or more particles. In contrast, polarizable force fields account partially for many-body effects through polarization, but still handle van der Waals and permanent electrostatic interactions pairwise. We showed that despite those limitations, polarizable and non-polarizable force fields can reproduce relative cooperativity achieved using density functional theory due to error compensation mechanisms. In this contribution, we assess the performance of QM/MM methods in reproducing these phenomena. Our study highlights the significance of the QM region size and force field choice in QM/MM calculations, emphasizing the importance of parameter validation to obtain accurate interaction energy predictions. 
    more » « less
  3. Dynamical conformational change of DS–DN incorporated DNA forming both WCF and nWCF conformers with SYN and ANTI orientations. 
    more » « less
  4. The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2′-deoxycytidine 5′-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3′-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase. 
    more » « less
  5. Water pollution from iodine is dangerous to human health because of its long-lived radioisotopes. We show that covalent organic frameworks containing amide groups (COFamides) can quickly remove iodine from water with large adsorption capacities. 
    more » « less